Counting Split Semisimple Orbits of Finite Lie Algebras by Genus
نویسنده
چکیده
The adjoint action of a nite group of Lie type on its Lie algebra is studied. A simple formula is conjectured for the number of split semisimple orbits of a given genus. This conjecture is proved for type A, and partial results are obtained for other types. For type A a probabilistic interpretation is given in terms of Solomon's descent algebra and card shu ing. 3
منابع مشابه
Counting Semisimple Orbits of Finite Lie Algebras by Genus
The adjoint action of a finite group of Lie type on its Lie algebra is studied. A simple formula is conjectured for the number of semisimple orbits of a given split genus. This conjecture is proved for type A, and partial results are obtained for other types. For type A a probabilistic interpretation is given in terms of card shuffling.
متن کاملBased Algebras and Standard Bases for Quasi-hereditary Algebras
Quasi-hereditary algebras can be viewed as a Lie theory approach to the theory of finite dimensional algebras. Motivated by the existence of certain nice bases for representations of semisimple Lie algebras and algebraic groups, we will construct in this paper nice bases for (split) quasi-hereditary algebras and characterize them using these bases. We first introduce the notion of a standardly ...
متن کاملLecture 5: Semisimple Lie Algebras over C
In this lecture I will explain the classification of finite dimensional semisimple Lie algebras over C. Semisimple Lie algebras are defined similarly to semisimple finite dimensional associative algebras but are far more interesting and rich. The classification reduces to that of simple Lie algebras (i.e., Lie algebras with non-zero bracket and no proper ideals). The classification (initially d...
متن کاملClassification of Finite-dimensional Semisimple Lie Algebras
Every finite-dimensional Lie algebra is a semi-direct product of a solvable Lie algebra and a semisimple Lie algebra. Classifying the solvable Lie algebras is difficult, but the semisimple Lie algebras have a relatively easy classification. We discuss in some detail how the representation theory of the particular Lie algebra sl2 tightly controls the structure of general semisimple Lie algebras,...
متن کاملCounting Fine Gradings on Matrix Algebras and on Classical Simple Lie Algebras
Known classification results allow us to find the number of fine gradings on matrix algebras and on classical simple Lie algebras over an algebraically closed field (assuming that characteristic is not 2 in the Lie case). The computation is easy for matrix algebras and especially for simple Lie algebras of Series B, but involves counting orbits of certain finite groups in the case of Series A, ...
متن کامل